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Improvement of the local prediction of chaotic time series
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In this paper we explore the effect ofpseudofalseneighbor points, which are true neighbor points in the
reconstructed attractor, but which are considered not suitable to be used when local methods are adopted to
predict the chaotic time series. In our approach, theep neighbor points are used to reduce the influence of the
pseudofalse neighbor points, thereby improving the performance of the local prediction of the chaotic time
series.@S1063-651X~99!11111-5#

PACS number~s!: 05.45.2a
er
e
n
n

ys
te
po
o
o

be
th
p
e
Fo
ob
te
p
t
on
a
r
iv
is

th
rv
f
r

a
d

jo
a

he
ur

all
long
ods
y.
f

l

at
-
-
ch

is
the
we
s of
use

ore

y-
ure
to-

it
e-

y
ill
al
i-
n-
pre-

to

-

I. INTRODUCTION

Predicting the evolution of physical systems from obs
vations is one of the most pressing challenges of mod
time series analysis. Since chaotic systems are freque
encountered in various fields ranging from physics a
chemistry to biology and others, prediction of chaotic s
tems thus has great practical significance. Although de
ministic chaos is characterized by positive Lyapunov ex
nents, and thus intrinsically associated with a loss
predictability, a great deal of research efforts which focus
the nonlinear prediction of chaotic time series@1–17# has
shown that reliable short term predictions can still
achieved. Furthermore, in addition to the importance of
predictions themselves, the methodology based on the
dictability of the systems under study has proved to b
powerful tool to analyze nonlinear systems in general.
example, from the cross-correlation function between
served values and the predicted values through these
niques, it is possible to estimate the largest Lyapunov ex
nent of the dynamics@13#. Also, when the fit or agreemen
achieved using nonlinear modeling is better than the
obtained using probabilistic models, it is reasonable to
sume that there is a deterministic mechanism which gove
the process under study, providing in this way a tentat
criterion to discriminate between chaos and no
@4,14,15,17#.

The predictions of chaotic time series are based on
reconstruction of strange chaotic attractors from an obse
time seriesx(t) @20#. It was shown@20# that an embedding o
the attractors can be obtained by constructing a vectoXt
5(x(t),x(t1t), . . . ,x„t1(d21)t…)T from time-delayed
coordinates, whered is the embedding dimension andt is
the delay time. Then the dynamics on the attractor is a m
f :Rd→Rd with xt85 f (xt), wherext is the current state an
xt8 is the future state. Thus if we find an approximationf t of
f, then we can use thef t as a prediction function.

Most prediction techniques can be grouped into two ma
classes: global and local. In global methods, the whole p
information is used for predictions about the evolution of t
system under study. One example is the method of ne
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networks@16#. Clearly, this kind of approach has the disad-
vantage that if new information is taken into account then
the parameters of the model may change, and then a
parameter estimation time may be required. Local meth
overcome this drawback by utilizing only part of the histor
In particular, if XN11 is needed, only the set of points o
reconstructed spaceXN(q):1<q<K, which are close
enough to the predicting pointXN , are used to fit the loca
function f. We can fit a new function for each timeN1t and
the prediction is given by the value of the fitting function
XN1t , whereXN1t itself is also a predicted value. The ap
proach allows for considerable flexibility in building a glo
bally nonlinear model, while fitting a few parameters in ea
local patch.

However, two difficulties arise from this approach. One
in deciding how to choose suitable neighbor points, and
other is the question of how long into the predicted series
can trust. In this paper, we explore the existence of a clas
neighbor points in phase space which are not suitable for
in local prediction — we call thesepseudofalseneighbor
points. We propose a method to choose alternative and m
relevant neighbor points (ep neighbor points!, and thus im-
prove the performance of the local prediction. As a b
product, the prediction process, which adopts our proced
to select the neighbor points, will in many cases stop au
matically ~i.e., there will be noep neighbor points around
some predicted point in the phase space! when the predicted
trajectory deviates significantly from the original one. Thus
can give us a modest warning of the reliability of the pr
dicted series.

The paper is organized as follow: In Sec. II we will briefl
review the local prediction method, and in Sec. III we w
define theep neighbor point. The improvement of the loc
prediction by usingep neighbor points instead of the ord
nary e neighbor points is described in Sec. IV Finally, co
clusions and some discussions of this approach are
sented.

II. LOCAL PREDICTION OF CHAOTIC TIME SERIES

The first step to establish the local prediction model is
transform the observed scalar signalsi ,i 51,2, . . . ,N with
the sample intervaldt, into M-dimensional time-delay vec
tors: Xi5(si ,si 2r , . . . ,si 2(M21)r), with the delay timet
5463 © 1999 The American Physical Society
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5rdt. For sufficiently largeM, the trajectory of reconstructe
vectorsXi reflects the true state space evolution of chao
systems.

Deterministic predictions assume that the trajectory g
erned by a deterministic continously mappingF. If the state
at time j was similar to the presentXi ~and thus close in the
phase space!, continuity of F guarantees thatXj 11 will also
be close toXi 11. Let Xi be the present state. To predictXi 11,
we can find all points within a region in phase space
radius e, i.e., the e neighbors of Xi :Xi k

,k51,2, . . . ,K,
where the indexk does not refer to time order, and denote t
image of each vectorXi k

asXi k11. The predicted valueX̂i 11

is then estimated from theseK images. Specifically, for eac
Xi k

we define the displacementD i k
5Xi k

2Xi ; X̂i 11 is then

computed asX̂i 115Xi1D i , whereD i is determined by loca
interpolation. Different methods thus appear based on
different methods of local interpolation, where the local li
ear method is most attractive due to its simplicity. This a
proach works very well for low-dimensional chaotic sy
tems. There are also many ways to improve the performa
of the prediction, e.g., by reducing the weight given to n
neighbors which are themselves neighbors in time; by allo
ing K to vary with Xi ; by using regularization technique
and by adopting other metrics instead of the normal Euc
ean metric.

III. PSEUDOFALSENEIGHBORS AND ep NEIGHBORS

One of the critical steps to establish the local predict
model is to find the neighbor points of a given point in t
training data set. Our choice of neighbors is limited by t
finite size of the data set, by the stochastic noise, and m
importantly by the complex structure of the attractor. The
limitation are the main source of errors in the analysis. Fi
ing legitimate neighbors of a given point is one of the m
critical tasks in obtaining reliable results. False neighb
can be caused by improper embedding, such as an ins
cient large embedding dimension@21#. In this paper, we are
not concerned with this kind of difficulty, since it cannot b
altered after we reconstruct the state space using a parti
embedding method. The question of how to perform an
timal reconstruction for the purpose of the prediction will
considered elsewhere.

While considering the particular problem of predictio
there is at one other kind offalseneighbor. From the point o
the view of attractor reconstruction, they are true neigh
points in the original phase space, but will greatly influen
the performance of the local fitting of the dynamics. W
illustrate this effect in Fig. 1, where the projection of th
three-dimensional state space is described. Projected tr
tories appears to cross near the pointXn . Suppose the pre
dicting ~reference! point is Xn , while Xn1

and Xn2
are two

neighbor points ofXn , and iXn2Xn1
i,iXn2Xn2

i . Note

that in the phase space,Xn1
is a true neighbor ofXn . It is

evident that if we took this point into account for local fi
ting, it would decrease the fitting accuracy dramatica
since the deviation at the next time is large. For a cha
system, this will lead to the fast amplification of error
future predictions because of the positive Lyapunov ex
c
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nent. It is then clear that for the purpose of local predictio
Xn2

is much better thanXn1
; evenXn1

is closer to the refer-
ence point. We call such points pseudofalse neighbor po
for local predictions. In our experience, the the error of t
local prediction method always bursts at a certain region
the state space.~Ref. @10# also observes this phenomenon!.
We believe that an important reason for this is the existe
of these pseudofalse neighbors. Pseudofalse neighbors
quently occur near saddle points in phase space. For
ample, in the Lorenz system, when usingx(t) to predict,
almost all divergence of the predicted trajectory from t
original one burst when the trajectory approachesx(t)50,
where near crossing of trajectories happens and the num
of pseudofalse neighbors increases dramatically~see Fig. 2!.

IV. IMPROVEMENT OF THE LOCAL PREDICTION

Our approach to eliminate the influence of the pseudofa
neighbors is to choose theep neighbor instead of ordinarye
neighbor to fit the local function. Suppose we have the sc
chaotic time series,$x(n),n51,2, . . . ,N%. According to the
Takens’ theory@20#, we can reconstruct the state space fro
the delayed coordinates. The state space can be writte
Xn5(x(n),x(n2t), . . . ,x„n2d(t21)…)T, where t is the
time lag, andd is the embedding dimension. It can be show
thatd>2D011 ~whereD0 is the box-counting dimension o
the original attractor! is sufficient, but smaller embeddin
dimensions will suffice for the purposes of forecasting@18#.
The value oft can be determined by the first minimum o
the mutual information@19# or the first zero value of the
correlation function, and the embedding dimensiond can be
decided by the nearest-false neighbor method@22#.

In the reconstructed state space, for a particular refere
point XN , the ordinary e neighbor points $XN( j ) , j
51,2, . . .% satisfiediXN( j )2XNi,e for j 51,2, . . . . Theep

FIG. 1. A schematic view illustrating the effect of the pseud
false neighbor point. In the figure,Xn1

is the pseudofalse neighbo
point of Xn , when using local prediction methods.



a
t
th
a
e
ra
lve

o
th
-
ls
T
ov

a
e
th
-
fo
g
to
d
rd
e
at
l-

ents,
m
he

to

ct

ig.

the
cal
on
he

e
ted

e

ade
les

o

-
e

use
ted
nd
or

ries

-

PRE 60 5465IMPROVEMENT OF THE LOCAL PREDICTION OF . . .
neighbor points$XN( j ,p) , j 51,2, . . . ,p51,2, . . .% are de-
fined as those points satisfying

iXN( j )2p2XN2pi,e ~1!

for every j andp. Noted that whenp50, it is equivalent to
the ordinarye neighbor. This approach is in fact using
segment of the pattern included in the training data se
ensure that the predicted value does not diverge from
original one.~However, if the original time series generate
new pattern that is distinct from the training data set, th
this method may give a wrong result. This is in gene
caused by insufficient training data, and cannot be reso
in the framework of the local prediction method!. The main
rationale behind this strategy is that theep neighbor points
lie near the reference point not only in state space, but als
tangent space. The similar idea is also used to identify
embedding dimension@26,21#, where the directions of vec
tors in a neighborhood are examined to exclude the fa
crossing caused by the improperly reconstructed space.
pseudofalse neighbor points for prediction mentioned ab
can be excluded when adopting theep neighbor points.

To illustrate the improvement of the performance of loc
prediction method by usingep neighbor points, we use th
Lorenz model as an example. This model describes
Rayleigh-Bénard convection arising from the two
dimensional Navier-Stokes equation, which is formulated
a fluid slab of finite thickness subjected to gravity loadin
heated from below and between the top cold and the bot
hot surface the temperature is held constant. The partial
ferential equations were transformed to a set of three o
nary differential equations@23#. Later Lorenz described th
way he derived the model both physically and mathem
cally @24#. The Lorenz equations can be written in the fo
lowing forms:

FIG. 2. Thex(t) –x(t1t) projection of the time-delay recon
struction of the Lorenz attractor described as Eq.~2!, where t
517 andd53.
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ẋ52sx1sy,

ẏ52xz1rx2y, ~2!

ż5xy2bz,

wherex is the amplitude of the convection motion,y is the
temperature between the ascending and descending curr
z is the distortion of the vertical temperature profile fro
linearity, ands,r , andb are dimensionless parameters. T
parameters are most commonly selected to bes510,r 528,
andb58/3 for a rich dynamical behavior@25#.

The standard fourth-order Runge-Kutta method is used
solute the equations~discarding the transients!. The time step
is set to bed50.01, and thex values are used to reconstru
the state space with the time lagt517 andd53. One of the
projection of the reconstructed attractor is described in F
2.

Since our main purpose is to show the improvement of
performance of the prediction, we adopt the simplest lo
prediction method, the locally constant approximati
method. In order to predict one step into the future of t
reference pointXN , we ~1! find the set ofep neighbor points
of the reference pointU(XN ,ep) @the Euclidean metric is
used in Eq.~1!#; ~2! take the average of the values of th
one-step future prediction of these points as the predic
state vector for the next time step,

X̂N115
1

iU~XN ,ep!i
(

XN(k)PU(XN ,ep)

XN(k) , ~3!

whereiU(XN ,ep)i denotes the number of the points in th
set of U(XN ,ep); and then~3! take first component of the
vector as the scalar predicted value.

Randomly selected time series with the length ofN
510000 are used as training set, and the prediction is m
as far asn5400 time steps into the future. Three examp
are shown in Figs. 3~a!–3~c!. In making the predictions, we
set e50.5, and if there is noep neighbor point of certain
reference point and certainp, which means that there is n
such pattern in the training data,~i.e., the predicted trajectory
already diverge from the original one!, we then stop the pre
diction process.~In actual implementation, because of th
correlation between the temporally nearby points, anep

neighbor point is in most cases anep11 neighbor point also,
we increasep by Dp55 to reduce the computing time!. In
Fig. 3~a!, the case ofp53Dp, the prediction process is
stopped around time step 110. This means that if we
ep515 neighbor points, then after 110 steps, the predic
result is already totally unreliable. No such indicator a
information is available if we are using ordinary neighb
points.

To measure the quality of the prediction, theM step rms
error

e~p!5
1

M (
k51

k5M

@x~k!2x8~k,p!#2, ~4!

where M is the total prediction step,x(k) is the observed
value, andx8(k,p) is the predicted value usingep neighbor
points. Furthermore, the cross-correlation between the se
of predicted values and the observed values,
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FIG. 3. Predicted and observed values of thex coordinate of the Lorenz system using differentp. Three time series with lengthN
510 000 are selected randomly from a long time series severed as the training set. 400 time steps are predicted.Dp55 ande50.5.
een
ed
igh-
ur
ion
not
or-
ind
C~p!5

(
k51

k5M

@x~k!2 x̄#@x8~k,p!2 x̄8~p!#
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k51

k5M

@x8~k,p!2 x̄8~p!#2

,

~5!

are also calculated as a function ofp and prediction timek,
wherex(k) represents the observed values,x̄ is the average
value of the observed value,x8(k,p) represents predicted
values usingep neighbor points, andx̄8(p) is the corre-
sponding average value.

The results are shown in Figs. 4 and 5. It can be s
clearly that the modified local prediction method improv
the performance greatly. Because choosing legitimate ne
bor points is the inevitable step for local modeling, o
method is thus valuable to more sophistical local predict
methods. Furthermore, it should be pointed out that it can
be ascertained that this technique will improve the perf
mance greatly for every system, since the rationale beh
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this technique is based on the existence of pseudofalse ne
bor points as defined. However, we believe that the propo
techniques exploits more of the available information in t
data sets, and is likely to lead to more satisfactory results.
the practical side, since recurrence is a fundamental cha
teristics of nonlinear dynamical systems, we can always
pect to find pseudofalse neighbors for use in the local p
diction.

V. DISCUSSION AND CONCLUSION

An interesting phenomenon is that when the parametep
is systematically increased, there seems to exist a crit
value pc ~cf. Figs. 4 and 5!, around which the prediction
performance will change dramatically. Beyondpc , there is
effectively no change in the performance of the meth
How the critical valuepc varies with different reference
points, system dynamics, and difference local fitting meth
needs further study. In our simulation, there seems to
an optimalp value after averaging over the whole attracto
This may suggest the optimal time window for predictio
The problem however is that this ‘‘optimal’’ value is sens
tive to the diameter of the neighborhoode, and thus the
effect of the finite length of the time series should be co
sidered.

Another important problem is the influence of the noise
is well known that any method based on tangent spac
sensitive to noise@21#, because both points used to form th
tangent vector are inaccurate. In our method, however,

FIG. 4. Root-mean-square~rms! errors are described as a func
tion of p. The training data set is the same as the one used in
3~b! dp51, and the predicted time stepM5400.
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problem is not so serious. As we mentioned above,
should useep neighbors to construct our predictor, wherep
always larger than 0 (e0 neighbors just the ordinarye neigh-
bors!, while the noise cankick off the legitimate point from
the set ofep neighbor, there is just little possibility tokick a
wrong point into ourep neighbors whenp is large. So the
noise may decrease the length of the effective prediction,
will not raise the risk of absurd prediction.

In conclusion, we have explored the problem of t
pseudofalse neighbor points in phase space for local pre
tion, and developed a method using theep neighbor points
instead of ordinarye neighbor points. The improvement o
the performance is significant, even for the simplest lo
constant approximation method. Essentially, this method
tends the local prediction by replacing the close-by points
a close-by pattern, i.e., a series of points sequentia in ti
This approach utilizes effective the temporal correlati
in addition to the spatial correlation, while the ordinary loc
prediction method uses only the latter. Our results a
indicate that there exists a critical valuepc in the time
window. It is also important to note that the local predictio
method has its intrinsic limitation as mentioned abov
e.g., it cannot predict the new pattern but only t
existing ones in the training data set. While our method c
improve the performance of local prediction, it is not o
purpose in this paper to overcome these intrinsic difficulti
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